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ABSTRACT

Digital analog simulation is the use of a general purpose
digital computer to solve engineering and scientific problems or
to simulate continuous models that are commonly done on an analog
computer. Digital analog simulation is not new, but it has become
more and more accepted during recent years. This paper presents
some techniques in digital analog simulation. There are two types
of techniques: those developed for analog computers but can also

be applied to digital simulation, and those developed for digital

-analog simulation by provision in the simulation language and its

compiler. 1In this paper, the recent language Mimic is chosen to

be used as the simulation language.

Digital analog simulation techniques are shown by presenting
the Mimic programs of several problems and their results. Six
problems are chosen: (1) solution of a non-linear differential
equation, (2) computation of a complex transcendental expression,
(3) generation of Bessel functions of the first kind, (4) solu-
tion of a partial differential equation, (5) double integration
of a function, and (6) simulation-of a non-linear feedback control

system.

The first problem is the well-known van der Pol's equation.
This problem is to introduce the Mimic language to the readers
who may not know this simulation language. The Mimic program 1is
explained, and the formats and some features of the language are
pointed out. The limit cycle and stability of the solution of
this problem can be observed from the readily obtained time-re-
sponse plot and phase-plane plot. The scaling and labeling of

the plots are done automatically.
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The second problem is computation of a complex transcend-
ental expression which describes the antenna radiation pattern
of a four-element binomial array. This problem is chosen to
show computation for an engineering application by Mimic instead

of solution of a differential equation.

The third problem is the generation of Bessel functions of
the first kind by using the differential relations of these func-
tions. This approach requires a successful way to handle the

initial conditions. Mimic language can accomplish this readily.

The fourth problem is a partial differential equation de-
scribing a one-dimensional heat flow. As developed for analog
computer solution, the partial differential equation is converted
by finite difference to a system of ordinary differential equations.
A larger number of these differential equations gives a more ac-
curate result, and digital analog simulation can achieve this
readily. The Mimic program here illustrates the simultaneous

solution of a system of twenty differential equations.

The fifth problem is to find the volume of a sphere by
using a nuﬁerical approach of double integration developed for
the analog computer. Since the exact value of the sphere is
known, the exact value is used for comparison with the result
from this approach. The result shows the great accuracy of the
double integration obtainable by this approach. The Mimic pro-
gram here shows the technique to switch out the integrators,

each at a specified condition.

The sixth problem is the simulation of a simple relay servo
with four different kinds of relays: simple relay, relay with
dead space, relay with hysteresis, and relay with both dead

space and hysteresis. The dynamic responses using these relays
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are compared with that of a linear servo. The Mimic program shows

how these kinds of relays are simulated.

Many advantages in using digital analog simulation are now
being recognized. The above Mimic programs and their results
have shown the advantages of greater accuracy, no need of scaling,
and no hardware setup. Plots are available with automatic scal-
ing and labeling. Other advantages are feasibility of function
generation of more than two variables, availability of many math-
ematical functions normally provided in a digital computer facil-
"ity, and better computer utilization. 1In addition, the cost of
digital analog simulation has become very reasonable. In conclu-
sion, the use of digital analbg simulation will be rapidly in-

creased as more and better digital computers become available.
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Digital Analog Simulation Techniqgues

Yaohan Chu
University of Maryland

College Park, Md. U.S.A.
February 15, 1967

Digital analog simulation is the use of a general-purpose
digital computer to solve engineering and scientific problems or
to simulate continuous models in a manner similar to that used on
an analog computer or a hybrid computer. Digital analog simula-
‘tion is not new. R. G. Selfridge (l) first pioneered the simu-
lation of a differential analyzer on a general-purpose digital
computer (IBM 701) in 1955, but the computer then was terribly
slow, hardware floating-point arithmetic was not available, and
programming technique was primitive. Since then, many digital
analog simulation languages and programs have been developed (2,3),
including DYSAC (4), DAS (5), MIDAS (6), PACTOLUS (7) ,MADBLOC (8),
MIMIC (9), DES-1 (10), and DSL/90 (l11). Furthermore, digital
computer has also been attempted to generate details for setting
up the analog computer (12); this effort has recently been re-
ported successful. However, the wide usage of digital-analog
simulation appeared to begin when the difital computer became
successful to give check solutions for analog simulations. This
success has been sparkled by the MIDAS which owed its birth in
1963 to the DAS. The MIDAS has received wide acceptance in uni-
versities, researchAorganizations, simulation laboratories, and
governmental facilities. Because of some important limitations
of MIDAS, a much improved version called MIMIC has been developed
in 1965 to succeed the MIDAS. This MIMIC language is used here

as the simulation language.



1. MIMIC Language and Compiler

MIMIC (19) is a block-oriented language. It has a set of
reserved words such as T, DT, INT, and TRUE which carry special
meaningsto MIMIC compiler. MIMIC is expressed in statements
such as constant statement, comment statement, computation state-
ment, and integration statement. A MIMIC program is a sequence

of statements with each statement punched on one card.

Each MIMIC statement, except the comment statement, may have
three fields: LCV (logical control variable) name field (card
column 2-7), result name field (col. 10-15), expression field
(col. 19-72). (The comment statement, a special case, is indi-
cated by the presence of a character in column 1.) In the block
concept, the result name is the output from the block, and the
exXpression shows the inputs and the operation to be performed on
the inputs. 1In the expression field, simple algebraic expressions
using operators +, -, *, and / (add, subtract, multiply, and di-
vide) are allowed as well as nesting of expressions by using pairs
of parentheses. The LCV name has two values: TRUE and FALSE. 1If
a statement has a LCV, the statement will be executed only when

its ICV has a value of TRUE.

The Mimic compiler is written essentially in Fortran. It has
a varying step-size, fourth-order Runge-Kutta integration subrou-
tine. It allows multiple runs when some constants are designated
as parameters. It has a sort subroutine which permits the computer
to behave as if it were a parallel machine. The compiler translates
a Mimic program directly into a machine language program and then
initiates the execution of the machine language program. It also
provides some diagnostid aid for debugging of programs. The com-
piler is relatively simple that a sophiscated user could understand
the details of the compiler well and, if a need should arise, modify

the compiler to suit his particular need. Lately, an on-line ver-



sion is being developed for use with a cathode-~ray-tube display

console (13).

This paper presents some techniques in digital analog simu-
lation by using the Mimic language. There are two types of tech-
niques: those developed for analog computers but may now be equal-
ly applied to digital analog simulation, and those developed in
the digital analog simulation language and compiler. These tech-
nigques are shown subsequently by presenting the Mimic programs and
the results. Six problems are chosen: solution of a non-linear
differential equation, computation of a complex transcendental
expression, generation of Bessel functions of the first kind,
solution of a partial differential equation, double integration
of a function, and simulation of a non-linear feedback control

system.




2. Van der Pol's Eguation

Many physical phenomena can be described by nonlinear dif-
ferential equations which are often impractical if not impossible
to solve by hand. vVan der Pol (l4) showed that the behavior of
an electronic oscillator could be described by a nonlinear dif-

ferential equation of the form,

'>£—A(1—x2)>'c+Bx=0 (1)

where %X and X are the first and second derivatives of x in time t,
and A and B are positive constants. A system characterized by this
" equation exhibits a limit cycle (oscillation of fixed amplitude and
period), which can be clearly observed on the phase plane (a plot
of X vs X). The limit cycle is due to the coefficient A(l - x )
which can become positive, zero or negative when the absolute

value of x becomes less than, equal to, or larger than one. At

a proper value of x, the oscillation becomes stable.

In order to compute equation (1), one must give the values

of constant B and parameter A. A is now taken as a parameter as
this equation is to be solved twice, and each time the value of A
is different while the value of B remains the same. Initial values
of x and k%X, (i.e. x(0) and %X(0) are also taken as parameters as
their values are different for each solution. Furthermore, the
time at which the computation is terminated must be given, and the
plots, if any, must also be specified. These values and specifi-

cations are all shown in Table 1.




Table 1, Data for computation of equation (1)

case (a) Case (b)

constant, B 1 1
parameter, A .2 1.5
initial condition,

x(0) 1 3

x(0) 0 0
termination, compute until t=50 sec.

plot, X vs t and X vs X

Once the equation and the data are given, we are ready to
write a Mimic program which is shown in figure 1. In figure 1,
the first five lines give five cards which are the control cards
of the Mimic program. The last five lines also give five control
cards to initiate a plot routine for off-line plotting. Since
these control cards vary with each computer installation, they

will not be further shown or discussed.

In a Mimic program proper, if there is a character (such as
an asterisk in figure 1) in the first position of the line (or the
card), the line (or the card) is a comment card for reference
purpose. Therefore, the next three lines and subsequent lines
which begin with an asterisk in figure 1 are comment cards. Com-

ment cards will also not be further mentioned either.

The Mimic program in figure 1 is now explained as follows.
We write a CON statement for the constant B,

CON (B)
where CON is a reserved word of the Mimic compiler, and there is
a data card associated with this statement. For the three above-
" mentioned parameters, we write the PAR statement,

PAR (A, XO, 1DXO0)




where X0 and 1DXO represent x(0) and x(0) respectively. PAR is
also a reserved word and one data card for each solution is as-
sociated with this statement. Let 2DX, 1DX, and X represent X,
%, and x respectively, and move all the terms of equation (1)

except the first to the right side of the equal sign. We then

have the following statement:
2DX = A*1DX-A* 1DX*X*X-B*X

to represent equation (l). And 1DX and X are obtained by inte-
grating 2DX and 1DX respectively as shown by the following two
INT statements,

1DX INT(2DX, 1DXO0)

and X INT (1DX, XO)

where INT is a reserved word to represent integrator. To terminate
the computation when the time exceeds 50 seconds, we use the FIN

statement,
FIN(T, 50.)

where T is a reserved word representing the independent variable
time. ©Note that the decimal point is required in the number 50.,
as a decimal point must be present for each number. To obtain a

table for the result from the printer, we use the OUT statement,
ouT (T, X, 1DX)

where the first argument T is the independent variable time. To
provide headings for each column of the table, we use the HDR

statement,
HDR (TIME, X, XDOT)

where TIME, X, andXDOT are the chosen words for the headings. To

obtain the two required plots, we use two PLO statements,
PLO (T, X)

and PLO (X, 1DX)




where T and X represents the abscissa of the plots. Finally, we
use the END statement to terminate the program. Note the three
lines of numbers after the END statement. These three lines are
three data cards: the first for the CON statement and the last
two for the PAR statements. The CON and PAR statements at the
beginning and the END statement and the data cards at the end of
the Mimic program proper must be placed in this order; other
statements between them can be placed at any order as the Mimic
compiler has a sort routine to order these statements into a

proper seguence.

As mentioned before, equation (1) and the data in Table 1
represent the data and the specification of the problem for compu-
tation. Compare and note the closeness between the Mimic program
in figure 1 and the specificiation of the program. This close-
ness between the programming language and the user's language may
be a measure of simplicity of the programming language and degree

of the required programming effort.

The results of the solutions are shown in figures 2 through
6. Figure 2 shows portion of the table of results due to the
OUT statement, where the values of the parameters are also shown.
The time responses for the two solutions are shown in figures 3
and 4, and the phase plane plots are shown in figures 5 and 6.
The scaling and labeling of these plots are done automatically
by the plot routine in the Mimic Compiler. The phase plane plots
show that the system has a stable limit cycle since the paths con-
verge to a single closed path in the plane, and the time response
plots show the oscillations reach a fixed amplitude and period.
For the solution where the value of A is smaller, the limit cycle
is nearly circular (fig. 5), and the oscillation is nearly si-
nusoidal (fig. 3). For the solution with a larger value of A,

the limit cycle is no longer circular (fig. 6), and the oscil-




lation is not quite sinusoidal (fig. 4).

The statement in fig. 1 except the comment statement con-
sists of one or two fields. Statements such as CON, PAR, FIN,
HDR, OUT, PLO, and END have only the expression field. The three
algebraic statments in fig. 1 have an additional Result Name
field. As mentioned before, there is a third field, called the
Logical Control Variable Name field. A statement with a logical
control variable becomes a conditional statement. An example of

using the logical control variable is now shown.

In using an OUT statement to obtain a table output, the
time interval to print each entry of the table is automatically
chosen by Mimic compiler to be 0.1 second, if it is not speci-
fied. This time interval is called DT, a reserved word. For
example, no DT is specified in the program in fig. 1l; thus, the
difference between two adjacent numbers in the first column of
fig. 1 is 0.1 second. However, the value of DT can be specified
by using a CON or PAR statement or by an equal statement. (see
fig. 7) The above situation also applies to PLO statement; in
this case, it is the time interval between two adjacent plotting

points.

Now, the logical control variable can be -'sed to give dif-
ferent values of DT during different time pericds. For example,
one may require more entries or points during the initial period
of a transient response, less entries or points as the response
approaching a steady state, and a few entries or points as the
response arriving at a steady state. As an example, the Mimic
program in fig. 1 is rewritten so that DT is 0.1 second when t
is less than one second. DT is 1 second when t is equal to or
larger than 1 second but less than 10 ¢_-onds. And DT is 10
seconds. when t is equal to or larger than 10 seconds. The re-

written progrem is shown in fig. 7 where logical control variables




D1, D2, and D3 control three values
variables are determined by logical
C2, and C3 which represent the time

than 10 seconds, and at larger than

of DT. These logical control
relations among variables C1,
at less than 1 second, at less

or equal to 10 seconds respec-

tively. These relations and representations are specified by FSW,

AND, and NOT statements as shown in

fig. 7. The table output of

this program is shown in fig. 8, where there are only 29 yet ade-

quate entries instead of possibly a table with pages of entries.
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SEXECUTE I18JOB
$1ID CHU #305/65/020%#3M%
$IBJOR FI10CS
SIBLDR MIMIC LIBE
$DATA
*#%RPROBLEM NO1###SOLUTION OF VAN DER POLS EQUATION
-
CON(B)
PAR(A9sX091DX0)

20X B A¥IDX=A®]1DX*X%*X=B#*X
10X = INT(2DXs1DXO0)
X ® INT(1DX9XO0)

FIN(T+30.)

HOR(TIME s XsXDOT)
HOR
OUT(TeXs1DX)

»
PLO(T X))
PLO(Xs1DX)

*
END

1.0

Oe2 1.0 060

145 3.0 060

]

SEXECUTE \ 18J08B

$1D CHU #305/65%5/020%#3M*

$IBJOR GO sNOSOURCE»FIOCS

$IBLDR MMPLOT LIBE

Figure 1, Mimic Program for Problem Nu. 1




A

2.00000€C-

TIME

Je

1.03J300E~
<.00000E-
3.60000€E-
4.00000c~-
5.00000E-
5.00000E-
7.00000E~-
8.00000E~-
9.00000&€-

1.00000E
1.10000E
1.20000t
1.30000¢E
1.43000¢t
1.50000¢
1.60000E
1.70000¢E
1.80000c
1.30000E
2.00000c
2.10000E
2.20000E
2.30000E
2.40000E
2.50000E
2.60000E
2. 7T0000E
2.80000%
2.90000E
3.00000E
3.10000¢&
3.20000¢c
3.30000E
3.40000¢E
3.50000€E
3.60000E
3.70000E
3.80000E
3.9000GE
4.00000E
4.10000¢€
4.20000E
4.30000E
4.40000E
4.50000E
4.60000E
4.70000E
4.80000E
4.90000E
5.00000&
5.10000E
5.20000E
5.30000E

01

01
01
01
0l
01
0l
01
o1
o1
00
00
00
00
00
00
00
00
03
00
00
00
00
o0
60
00
00
00
09
00
00
02
00
00
00
00
00
00
09
00
GO
03
00
00
03
00
00
00
09
00
00
00
00
00
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X0
1.00000E 00

X

1.00000E 00O
3.95004E~01
9.80063E-01
3.55313E-01
9.20963E-01
Be77289E-01
8.24624E-01
7.63353E-01
6.93905E-01
6.16762E-01
5032454E-01
4.41571E-01
3.44765E~-01
2.42765E~01
1.36381E~01
2.65155E~0¢
~B+58305E-02
-1.99558E-01
-3.13473E-01
=4.26296E-01
~5436682E-01
-6.43250E-01
~T.44609E-01
~6e39404E-01
=-9.26353E-01
-1.00428E 00
-1.07218E 00
-1.12917E 00
-1.17461E 00
-1.20802E 00
-1.22912E 00

-1.23778E 00

-1.23405E QO
-1.21809E Q0
-1.19017E 00

-1.15063E 00

-1.09989E 00
-1.03B838E 00
-9.66596E-01
-8.85048E-01
~7.942795-01
~5.94869E-01
-5.87464E-01
-4,72695E-01
-3.51392€E-01
~2424406E-01
=9.2727T7TE-Q2
4,25155E-02
1.80043E-01
3.18443E-01
4.56129E~-01
5.91412E-01
71.22514E-01
8.47621E-01

1DX0
J.

Xpor

O.
~3.98384E~-02
-1.98748&£~01
~2.95912E-01
-3.90628E-01
-4.82289E~-01
-5470361E-01
=6.54355E-01
=T.33734E-01
~8.08185E-01
-B8.76987E~01
=3.39594E-01
=-3.95310E~01
-1.04335€ 00
~1.08283% 00
-l.112381€E 00
-1.13223E 0O
-1.14028E 00
-1.13583E 00
-1.11833E 00
-1.08709E& QO
-1.04193€ 0O
=3.82985E-01
=-9.10776&E-01
-B.26242E-01
-7.30585E-01
=6.25711E-01
-5.13136E-01
-3.94876E-0C1
-2.72840E-01
-1.48834E-01
=2.44825E£~02

7.88180E-0¢

2.19919C~-01
3.37918&£-01
4.52127E-01
5.62041£-01
6.67278E-01

T1.67533E~01

8.62515E-01

9.51898E-0G1
1.03527c GO

1.11208E 00

l.18162E 00

1.24299E 00

1.29508& 00

1.33661¢ 00

1.36613E 00

1.38214E 0O

1.38313&E 00

1.36775E 00

1.33494E 00

1.28407€ 00

1.21507€ 00

Table Cutput of Problem Yo. T
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8 FIGURE 2-1

R~ U4, Time response of van der Pol's aguatisn
for ) = 1,5
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FIGURE 2-2

Mg. %, Phase plane trajectory of
van der Pol's equation
for » = 1,5
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**¥PROBLEM NO,1A%**#SOLUTION OF VAN DER POLsS EQUATION

*

D1
D2
D3

DT
DT
pT

D1
D2
D3

1
Cc2
c3

2DX
1DX

1.0
3.0

CON(B)
PAR{AsX0s1DXO0)

ol
1.
10,

C1
AND(C2sNOT(C1))
AND(C3sNOT(C1) sNOT(C2))

FSW(T=1es TRUESFALSEsFALSE)
FSW(T=10s s TRUEsFALSEsFALSE)
NOT(C2) ~

A¥IDX~AR]IDX X% X=B%X
INT(2DX+1DXO0)
INT(1DX9XO0)
FIN(T»1004)
HDR(TIMEs X9 XDOT)
HOR

OUT(TeX91DX)

END

[N
o o

Figure 7, Mimic Program for Problem No. 1A




A .
2.00000E-01

TIME

O.

1.00000&-01
2.00000E-01
3.00000€&-01
4.00000E-01
5.00000E-01
6.00000E-01
7.00000E-01
8.00000E-01
9.00000E~01
1.G0000E 00
2.00000E 00
3.00000& 02
4.00000E 00
5.00000E& 00
6.00000E OO
7.00000E 00
B.00000E 00
9.00000E 00
1.00000E& 01
2.00000E 01
3.00000€ 01
4.00000E 01
5.00000E 01
6.00000& Ol
7.00000E 01
8.00000E 01
9.00000E O1
1.00000E 02

Fig, 8 T ble output for Problem No. 1A
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X0
1.00000E .00

X

1.00000E 00
9.95004E~-01
9.80063E-01
9.55313E-01
9.20963E-01
B.77289E~-01
8.24624E-01
7.63353E~01
6.93905E-01
6.16762E-01
5.32454E-01
-5.36682E-01
-1.22912€ 00
~7.94283E-01
4.56126E-01
l.42421E 00
1.07102€ 00
=2.99046E~-01
-1.55026E 00
-1.33287€E 00
71.25612E-01
34.22739E-01
-1.37422E 00
1.95387€E QO
-1.89276E 00
1.34421E 0O
~4.49562E-01
~6451746E-01
1.60941E 00

10X0
Do

XDIT

3.
-9.98384E-02
~1.98748E-01
-2.95912E-01
-3.90628€E-01
-4.82289c-01
-5.70361E-01
~5.54355E-01
=7.33794E-01
-8.08185&E-01
-8.76987E-01
~1.08709E 00
~-1.48837E-01

3.51898E-01

1.36776E 00

3.47235E-01
-9.70320E-01
-1.60171E 00
~5.94221E-01

9.28230E-01
-1.69192E 00

2.03610E 00
-1.60221E 0O

4.46530F-01

5.08337E~-01
-1.33927€ 00

1.87068E 00
~2.01458€ 00

1.30475E 00



3. Antenna Radiation Pattern

The computation of the radiation pattern of an antenna (14)
is often a tedious task. This problem is to show that MIMIC can
perform such a computation and plot radiation pattern just as

well as solving a differential equation.

A four-element binomial array with a given element spacings
is the chosen antenna array. It is required to compute radiation
pattern of this array where the current intensities follow a
binomial distribution. The radiation intensity of this array is

given by,

E(0) = I, exp [jzn(dl/xxsine] + 1, exp[j2n(d2/k)sin9]

+ I3 exp[j2&(d3/K)sin9] + I4 exp[jZn(d4/l)sin9J (2)

when A is the wavelength, 6 is the angle between a direction line
and the normal to the array plane d's are element spacings from

an arbitrary reference and I_.is the current intensity in the ith

1
element. The real part Rlof the E(8) 1is,
Ry = I,C; + I,C, + I.Co+ I,C, (3)
and the imaginary part R2 is,
- 4
R, 1,8, + 1,8, + 1,8, + I8, (4)
where C., = cos r2n(d_/k)sin9] (5)
1 L i
and s, = sin [2n(di/k)sin9] (6)

and the magnitue R of the E(8) is,
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The radiation power PWR in db is,

PWR = 20 loglOR ' (8)

Table 2, Data for computation of antenna radiation pattern

constants, Il =1
I2 =2 !
I3 = 2
I4 =1
parameters, dl/A =0
dz/k =1
d3/x = 2
d4/A = 3
termination, compute from 6=0 to 6=180°
plot, PWR vs ©

A Mimic program for computing the magnitue and power of the
radiation by using equations (2) through (8) and the data in Table
is shown in fig. 9. Equivalent symbols are shown in Table 3 for
those in the program that differ from those in the equations. ﬁo—
‘tice in the progfam the use of SIN, COS, SQR, and LOG statements
for obtaining sine, cosie, square-root, and logarithm of an argu-
ment. Also notice the algebraic expressions which are limited to
operators of +, -, *, and / (addition, subtraction, multiplication
and division respectively). The radiation pattern is shown in the

plot of fig. 10 for an angle from 0 to 180 degrees.
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able 3, vggyivalent symbols

Program symbols

equation symbols

Ii

Di

Ci

Si

THETA

I.
i

di/x
cos(zn(di/k)sing)
sin(2n(di/k)sin9)

® in radians
8 in degrees

Tsine
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##%PROBLEM NO,2%#*#*COMPUTATION OF ANTENNA RADIATION PATTERN
* .

CON(I1912913914)

PAR(D1sD24D3sD4)
* .
THETA = T%3,1416/18040
L = 642832%SIN(THETA)
*
Cl = COS(D1*L)
c2 = COS(D2*L)
C3 2 COS(D3*L)
C4 = COS(D4*L)
*
S = SIN(D1I*L)
52 = SIN(D2#L)
S3 = SIN(D3*L)
S4 = SIN(D4x*L)
»* .
*%%XRFAL PART OF RADIATION INTENSITY
R1 = (T1%#C14+12%C2+13%C34+14%C4) /640
»
*%%IMAGINARY PART OF RADIATION INTENSITY
R2 = (11%S1+I12%52+13%S3414%54) /640
*
*##MAGN *TUDE OF RADIATION INTENSITY
R =z SQR(R1*#R14R2%R2)
»*
*%*RADIATION POWER IN DB
PWR =2 20,0%L0OG(R»1040)
L
FIN(T+180,0)
HDR(TesRsPWR)
HDR
OUT(TsRsPWR)
. PLO(T+PWR)
END
140 20 2.0 1.0
0.0 1.0 260 340

Figure 9, Mimic Program for Problem No. 2
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4. Generation of Bessel Functions of the First Kind

It is well known that the Bessel function of the first kind
Jn(t) may be defined as a solution of. the following second-order
deferential equation (15).

&; +

J +(1 - J =0 9
( 22_) (9)

.ﬁIH
o]
o]

where n is the order of Bessel function. The solution of this
equation is a well-known series with infinite terms. This series
can give the initial conditions of Bessel functions of nth and

lower orders which are listed below,

JO(O) =1, JO(O) =0 (10)
Jl(O) = 0, Jl(O) = 0.5
J2(0) = J3(0) = ,.. = 0, J2(0) = J3(O) = ... =0

In the case of n equal to O, it is possible to generate Jo(t)
by solving equation (9) on an analog computer (16,17). For analog
generation of Bessel functions of first and higher orders, it is at
best inaccurate if impossible because division of the independent
variable t at t equal to 0O is required in equation (9). Since in-
itial conditions of (n+l) derivatives of Bessel function of nth
order are available, it has been shown (18) that, if equation 9 is
deferentiated n times, solution of the resulting (n+2)th order
deferential equation can generate Bessel function of nth or lower

order with the use of the available (n+2) initial conditions.



*%#PROBLEM NO«3##%#GENERATION OF BFSSFL FUNCTIONS OF THE FIRST KIND

»

Jo
J1
J2
J3
Ja

KO0
K1

K2
K3

Fig. 11,

~ 13a -

INT(=J191e0)

INT(J0-KO0s0s)
INT(J1~K1904)
INT(J2-K290.)
INT(J3-K3+0.)

J1/7

2e%J2/7
3e#J3/7
Go®J4/T

FIN(Te164)
HDR(TIME»J0»J19J235J39J4)
HDR
OUT(T9J09JYJ29sJ3,5J6)
ouT
PLO(ToJ0eJY9J29J39J4s)
END

Mimic Program for Problem No, 3
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Another possible and simple method is based on the use of the

following known recurrence realtion (17),

F.(60) =3 (1) - B (t) (11)

Which permits generation of Jn if Jn—l is available. For example,

if n is equal to 4, the following set of equations can be obtained

from equation (11):

Jo(t) = -7, (¢)

. 1

Jl(t) = J,(t) - — J, (t)

Jo(t) =3 (t) - _2_J_(t)

2 1 t 2 (12)
I (e) = T, (t) - -2 J.(8)

s — a

§,(6) = 3,(8) - T4 ()

Solution of this set of first-order deferential equations can give
Bessel functions of 4th and lower orders.

A Mimic program which solves this set of equations is shown
in fig. 11 by using initial conditions (10). The problem of
dividing zero by zero in equations (12) at t equal to O is handled
by the compiler as/initial conditions which are specified in the
INT statements are used for the first iteration. A plot showing
Bessel functions of the first kind for n equal to O through 4 is
shown in fig. 12. ©Notice that all J's have the initial values of

zero except JO which has an initial value of 1.
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5. One-dimensional Heat Flow Eqpatibn

Analog computer has been used to solve partial differential
equation. Consider the one-dimensional heat flow in a long,
thin, uniform rod which is insulated on all sides except one end
(say, left end of the rod). As shown elsewhere (18-21), the
temperature distribution, as a function of time t, of the rod
can be described by the following one-dimensional partial dif-

ferential equation which is parabolic,

2
3T = k_3°T
S SP 522 (13)

where x is the distance measured from the left end, T the temper-
aturé, k the thermal conductivity, c the specific heat, and p the

density of the rod. Both x and T are independent variables.

Since both x and T are the independent variables, it is not
possible to simulate the partial differential equation exactly
on an analog computer as time is the only independent variable
available in an analog computer. By using finite difference to
approximate the partial derivative in x, equation (13) can be
changed into the following system of first-order ordinary diffef—
ential equations. Let the rod of length.Lnbe divided into 20

equal increments of length Ax. We then have,

T, = £(t)
dr /dt = 8(T, - 2T, + T()
dr,/dt = &(T, - 2T, + T,)
e —— — — — —— e e (14)
dTlg/dt = Z(T20 - 2T19 + T18)
dTZO/dt = Z(2T19 - 2T20)
where 2 = k/cp(Ax)2 (15)
and Ax = L/20 (16)
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Function f(t) is the temperature applied at the uninsulated end
of the rod, and Ti‘s are the temperatures at the ehds of each
increment. The above set of ordinary differential equations pro-
vides an approximate solution when they are solved simultaneously.
And this solution describes the temperature as a function of time

at finite increments of distance along the rod.

Table 4, Data for one-dimensional heat flow simulation

Qunatity Value
L 1 ft.
k 2.4 btu/min-ft-"F
c 0.2 btu/1b-°F
P 150 1b/ft>
T, (0) o°F
£(t) 120°F

To simulate the heat flow in the rod, we assume that the rod
is initially at OOF and a heat source at 120°F is applied at t
equal to 0 to its left end. Chosen values of other constants are
shown in Table 4. The Mimic program is shown in fig. 13 which
consists essentially of the 20 INT statements. Fig. 14 is the
transient response where the temperature at the ends of 5th in-
crement,® 10th increment, 15th increment, and the right end of the

rod are shown.
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*%%PROBLEM NOJ4#%#2ONE-DIMENSTONAL HFEAT FLOW

*

ELTAX

Figo 13’

Wouwow o "o nu

1.

2e4

0e2

150.

1¢/20s
K/(CHPRDELTAX®DELTAX)
De

120

INT(Z¥(T2 =2%#T1 +T0 )o1C)
INT(Z%(T3 =2%T72 +T1 ),1CQ)
INTIZ% (T4 =2e%#73 +T2 )»1C)
INT(Z*(T5 =2%T4 473 ),1C)
INT(Z#(T6 =2e%T5 +T4 ),1QC)

INT(ZH(TT =2%T6 +75 1,1C)
INTUZH(T8 =2e%#T7 476 )»1C)
INTUZ#(TO =2+%#T78 +T7 )s1Q)
INT(Z¥(T10=2e%T9 +T8 ) ,1C)
INT(Z#(T11-2%T710+79 ),»1Q)

INT(Z#(T12=-2+%T11+T10)1C)
INT(Z#(T13=2%T124T11)1C)
INT(Z#(T14-2e%#T134T12),1C)
INT(Z#(T15-2e%T144713),1C)
INT(Z%(T16=2%T15+T716),1C)

INT(ZR(T17-2e%T16+T15),1C)
INT(Z#(T18=2e%T17+T16)1C)
INT(Z2(T19-2%#T718+T17),1C)
INT(Z%#(T20-2%T19+T18),1C)
INT(Z*(2%#719-20%T720)51C)

FIN(Ts20s)
HDR(TIMEsTOsT59T109T15+720)
HOR

OUTI(TsTOsT5sT10sT15+T720)
PLO(TsTOsT54T109T154T720)

END

Mimic Program for Problem No. 4
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6. Double integration of a function

As mentioned, there exists only one independent variable in
an electronic analog computer. Double integration of a function
implies that there exist two independent variables. For example,
the volume of a sphere with a unity radius, V, can be expressed
as below,

2
vV = jl fl’x ony dy dx (17)
-1 0
where X and y are the distance along X and Y coordinates whose
origin is located at the center of the sphere. This integration
can be analytically evaluated and the exact‘volume of the sphere

is 4n/3.

The above expression can be rewritten into,

v=anfly ax (18)
i
0
l-xi
where v, = ' y dy (19)
iy

Since both x and y are the independent variables, it is not pos=
sible to perform both integrations on an analog computer. An

alternative method has been reported (22). Another alternative
is to have one of the two integrations performed by a numerical

method; this is the approach taken here.

Expression (18) is to be integrated numerically. Let the
radius along the X axis be divided into six equal increments.
Let h be the increment, which is then equal to 1/6. Various

numerical methods of integration are available.
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Table 5, Numerical integration formulas and results

Method Integration formula Result
Exact vV = 4n/3 4,18880
Euler vV = (yo+yl+y2+y3+y4+y5)(4nh) 4.683106
Simpson vV = (yo4yl+2y2+4y3+2y4+4y5+y6)(4nh/3) 4,18858
Weddle V. = (Y +5Y+Y,t6Y 3+, +5Y 4y ) (4) (3h/10)4.18858

Three integration methods (23-25)are selected and their formulas
are shown in Table 5. In evaluating expression (17), the values
of X, must be known, and then the integration limits y, are com-

puted and shown below,

2

x,= Oh = 0, Yo= v1-x, =1

x,= 1h = 1/6, Yy= J35/6

x,= 2h = 2/6, v,= /32/6 (20)
X = 3h = 3/6, Y3= J27/6

X, = 4h = 4/6, Yu= J/20/6

x.= 5h = 5/6, Y= J11/6

The Mimic program for evaluating the expressions (18) and (19)
is shown in fig. 15 when T represents variable y. Notice that the
integration Yi's are terminated by making the integrands DYi equal
to 0 at the proper terminating time Ti by means of FSW statements.
Logical control variable S is to make the computation of volume
done only when variable T is at the terminating value of unity, as

there is no need to compute the volume at any other time. The




results are also shown in Table 5. Notice that Simpson and Weddle
integration formulas give a result accurate to five digits. And
better accuracy can be readily obtained by dividing the radius into

more increments.
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*#%PROBLEM NO+S***DOUBLE INTEGRATION OF A FUNCTION
*

DT = J01
»*
Yo = INT(DYDs0s)
Y1 = INT(DY1+04)
Y2 = INT(DY240e)
Y3 = INT(DY340.)
Y4 = INT(DY4s0e)
Y5 = INT(DYS5+0.)
Y6 = 0o

»
##2FUNCTION SWITCHES DY! AND S

DYO = FSW(T=TOsT9sTe0s)
DY1 = FSWIT=T1+T9eTe0s)
DY2 = FSW(T=T2eTsTeNs)
DY3 =2 FSWIT=T35sTsTe0s)
DY4 = FSW(T=T4+4TsTs0s)
pYS = FSWIT=TS59T9sTe0s)
S = FSW(T-499999+FALSE s TRUE s TRUE)

* .
%¥##TIME TO TERMINATE THE INTEGRATORS

T0 = la .
T1 = SQR(35,)/6
T2 = SQR(32.)/60
T3 = SQR(274)/64
T4 =z SQR(20.)/6¢
T% = SQR(11,)/6.
» ‘
###EXACT VALUE
S VEXACT = 3.1416%4./3,
»*
*%%USE EULER'S RULE FOR N = 6
S X 2 (YO+Y14Y24Y34Y44+Y54Y6) R4 %341416/60
*
®#xRYSE SIMPSON'S RULE FOR N = 6
S V1 2 4R (Y14Y34Y5)
s V2 = 24%(Y24Y4) )
S \ = (YO+V14V2+Y6)%4,%3,1416/18,
*
*#x#USE WEDOLE'S RULE FOR N = 6
S wil = 5,%(Y]1+Y5)
S w2 = YO+Y24Y44Y6
S w = (W24W146e%Y3 ) R4,%#3,1416/20
*2xTERMINATION
FIN(Tsls)
*#2%OUTPUT
HOR(TSVEXACT s XsVoW)
HDR .
S : OUT(THIVEXACTsXsVeW)
END

Mg. 15, Mimic Program for Problem No. 5
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7. Simulation of Relay Servos

A relay servo (26-28) is a feedback control system in which
the corrective éower to the motor or load is applied discontinuously.
Because the corrective power is operated at full power, the re-
lay servo responses rapidly. The simplicity and economy of a
relay‘servo is attractive, provided that the requirements in static
accuracy, stability, and transient performance can be met.

The characteristic of the relay is very important in determining
the stability and accuracy of the servo. Four most common types
of relay characteristics are shown in figure 16. Note that, in
these characteristics, there are no more than three corrective levels:
a positive maximum, zero, aﬁd a negative maximum.

Four relay servos are simulated to illustrate the technique
in simulating nonlinear control system. Each of these four servos
is a linear, second-order servo, but each is incorporated with one
of the four types of relays. For comparison purpose, the linear
servo is also simulated. These five cases are listed in Table 6.
The block diagram of the relay servos

Table 6 Five Simulated Servos

Mimic Transienf Phase
Case Description Program} Response}] Trajectory

6(a) linear second-order servo } fig. 18} fig. 19 fig. 20
6(b) servo with a simple relay | fig. 21| fig. 22 fig. 23

6(c) servo with a dead space »
in the relay fig. 241 fig. 25 fig. 26

6(d) servo with hysteresis
in the relay fig. 27{ fig. 28 fig. 29

6(e) servo with both dead space fig. 30{ fig. 31 fig. 32
and hysteresis in the relfay -
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Table 7. Values of Constants and Parameters for Simulation

cCgognstants Parameters
Case A B \Y% D H| 1IDXO X0
6(a) 2 .5 - - - 0 1.5
6 (b) 2 .5 1 - - 0 1.5
6(c) 2 .5 1 .2 - 0 1.5
6(4d) 2 .5 1 .2 ~ 0 1.5
6(e) 2 .5 1 .2 .1 0 1.5

is shown in fig. 17. Two relations are apparent from the block
diagram.

E=Y - X (21)

X A

G A(BS+1) (22)
where X and Y are respectively the input and output of the servo,
and E (error signal) and G are respectively the input and out-
put ot the relay. A is the gain ot the loop, without the relay,
and B the time constant of the motor. The above transter function

X/G can be rewritten into,

S X =- SX/B + G-A/B (23)

For each of these cases, input Y is taken to be zero, but
output X is initially displace; thus, X is equal to -E. The tran-
sient response ot the output ot these servos and the phase tra-
jectories are plotted. The values of the constants and parameters
for tive cases are chosen and listed in Table 7. where constants A

and B are detined in equation (22) and constants V, D, and H are
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—> E
-V
(a) simple relay
+V
=D S>SE

+D

(¢) relay with hysteresis

G
4\
+V
<D E
m —
-V
(b) relay with dead space
‘F
+V
=D, -H : 3 E

(d) relay with|dead space
and hysteresis

Fig. 16, Characteristics of four relays
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Relay — A
S(BS + 1)

Fig. 17, Bloack diagram of the relay servo
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defined in tig. 17. Simulation is terminated when time reaches

five seconds.

(a) Linear servo

The linear, second-order servo is represented by the above
equations (21) and (23) in addition to the relation G=E. This re-
lation, however, is redundant, but it enables one to use the same
variable names for all five cases.

The Mimic program for the linear servo is shown in fig. 18.
The transient or error response is shown in fig. 19 where it ex-
hibits the commonly-desired, slightly-underdamped response. The
phase trajectory is shown in fig. 20. It is a continuous curve,
which begins at-X equal to 1.5 and X egual to 0. Section AB of
the trajectory shows the overshoot portion and BO the under-
shoot portion. The trajectory approaches the origin exponentially

in time.
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*

*%*#PROBLEM NO, SA***LINEAR SERVO SIMULATION
*

CON(AsB)
PAR(1DX0sX0)

DT

0.01

2DX
10X

~1DX/B+G*A/B
INT(2DX91DX0)
INT(1DX9XO0)
Y=X

0.0

@ <mx
[ I B B B

E

FIN(T»+560)
HDR(TIME s X s XDOT)
HDR
OUT(TeXs 1DX)
PLO(TsX)
PLO(X» 1DX)
END

2.0 0.5

15

o
.
o

Figure 18, Mimic Program for Problem Yo, 6)
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FIGURE 1-1

Fig. 19, Time response of the linear servo

T 1 L 1
1.60 2.1 3.2 4.00 4.680 5.60
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(b) Simple relay servo

The simple relay servo is represented by equations (21) and
(23) and the bang-bang characteristic shown in fig. 6(a), where
exhibitis three power levels: +V, 0, and -V. This characteristic

can be stated as below,

G = +V when E>0
G = 0 when E=0
and G = -V when E<O

Condition E>0 can be expressed by using logical control variable
El determined by the following FSW statement,

El = FSW(E,FALSE,FALSE, TRUE)
Which states that El is true whenever E>0; otherwise El is false.
Similarly, condition E<O can be expressed by using E2 determined
by the following statement,

E2 = FSW(E, TRUE,FALSE,FALSE)
Condition E=0 is equivalent to that when both El and E2 are false;
this can be expressed by using E3 determined by the following nest-
ing statement,

E3 = NOT(TOR(E1l,E2))
Where NOT and IOR denote logical-not and logical-or operations re-
spectively. The above results in six statements which are shown
in the Mimic program for itus servo in fig. 21.

The transient or error response is shown in fig. 22, and the

phase trajectory in fig. 23. Since the corrective power reverses
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instantaneously as the error signal goes through zero, the output
X oscillates about the horizontal axis as shown in'fig. 22. The
oscillation ultimately damps to the origin of fig. 23, because of
positive damping by the motor. The vertical axis in fig. 23 is

the line where the switching of the relay occuré; this line divides

the phase plane into a positive- and a negative- torque regions.




*

**¥%PROBLEM NO.6B##%SIMULATION OF A SIMPLE RELAY SERVO

*

oN
.

€l
E3
E2

oT

2DX
10X

QO <X<mx

- 24a -,

CON(AsBsV)
PAR(1DX0sX0)

0.01

-1DX/B+G*A/8
INT(2DX91DXO0)
INT(1DX+XO0)
Y-X

0.0

v
0.
-V

FSW(EyFALSEsFALSEs TRUE)
FSW(Es TRUEsFALSEsFALSE)
NOT(IOR(E1+E2))

FIN(T+5,0)
HDOR(TIMEs X XDOT)
HDOR
OUT(TeXs1DX)
PLO(ToX)
PLO(Xe1DX)
END

160

Figure 21. Mimic Program for Problem No,fPR
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FIGURE

Fig. 22, Time response of a relay servo
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(c) Relay servo with dead space

The relay in this servo has the dead-space characteristic
shown in fig. 6(b), where there are also three power levels,

+V,0, and -V. This characteristic can be stated as below,

G = +V when E>» 4D
G = 0
and G = -V when E< -D

Similar to the simple relay servo, these conditions can be
expressed by logical control variables E1,E2, and E3, determined
by the following three statements,

FSW(E-D, FALSE,FALSE, TRUE)

El =
E2 = FSW(E+D,TRUE,FALSE,FALSE)
and E3 = NOT(IOR(E1l,E2))

The Mimic program for this servo is.shown in fig. 24 where the
above six statements are included. The transient or error response
is shown in fig. 25. Output X approaches the value of D(i.e. 0.2);
this limits the static accuracy. The phase trajectory is shown in
fig. 26 where the relay switches at two vertical lines of X=-D and
and X=+D. The phase plane is thus divided into three regions; the
positive-, zero- and negative-torque regions. 1In the zero-torque
region, the corrective power is not activited, and the load coasts
across the dead-space with little change in speed. The zero-torque
region helps stabilization, and the servo can come to rest and
stay within the dead-space, instead of going into a limit cycle.

However, here is a larger status error due to the dead space.
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¥%*XPROBLEM NOo 6C*¥%SERVO SIMULATION WITH DEAD SPACE IN THE RELAY
*

CON(AsBsV,D)
PAR(1DX0sXO0O)

DT

0.01

2DX
1DX

-1DX/B+G*A/B
INT(2DX»s1DX0)
INT(1DX9X0)
Y-X

0.0

El
E3
E2

v '
0.0 '
-V

OO <mXx
]

E1l - = FSW(E=DsFALSEsFALSE s TRUE)
E2 = FSW(E+Ds TRUEsFALSE »FALSE)
E3 = NOT(IOR(E1sE2))

FIN(Te5.0)
HOR(TIME X XDOT)
HDR
OUT(T+Xs1DX)
PLO(TsX)
PLO(Xs1DX)
END
.0 005 100 002
0

Figure 24, Mmic Program for Probler Yo, 6C
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FIGURE 1-1

Fig. 25, Time response of a relay servo with a dead-space
in the relay
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(d) Relay servo with hysteresis

The relay in this servo has the hysteresis characteristic
shown in fig. b(c). This characteristic can be described as follows.
If G is initially +V, then G remains at +V if E >-D; otherwise, G
becomes -v. If G is initially -V, then G remains at -V if E< +D;
otherwise, G becomes +V.

Let H represent G equal to +V and -V when H is true and false
respectively, then we have the following LSW statement,

G = LSW(H,+V,-V)

Let E1 be true when E> +D and E2 be true when E <-D, then we have,

El FSW(E-D,FALSE,FALSE, TRUE)

Il

EZ2 FAS (E+D, TRUE, FALSE, FALSE)

Now to remember the initial status of G, a flip-flop represented
by a FLF statement is employed. Tﬁe FI.F statement has three
arguments, say, El1, E2, and R, where R denotes the initial status
at time equal to O(to be arbitrary chosen true here). Let H be
the status of the flip-flop. The following FLF statement,
H = FLF(El,E2, TRUE)

prescribes that H become true when El is true, become false when
E2 is true, and remain unchanged when both El and E2 are false.

If G is initially at +V, H is true and remains true until E2
is true (this means until E< -D). If G is initially at -V, H is
false and remains false until E1 is true (this means until E > +D).

Both El1 and E2 are false when -D=E=+D, and that both El and E2 are
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true is impossible. Thus, the above four statements prescribes
the hysteresis characteristic in fig. 6(c). Theseistatements are
shown in the Mimic program for this servo in fig. 27.

The transient or error response is shown in fig. 28 and the
phase trajectory in fig. 29. Since the hysteresis delays the switch-
ing operation, the corrective power is not reversed until the out-
put X is past the desired zero point. As can be seen on the phase
plane, the effect is destabilizing. There exists a limit cycle

as shown in fig. 29.
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#%%XPROBLEM NOs 6D*#%#SERVO SIMULATIONWITH HYSTERESIS IN THE RELAY
*

CON(AsBsV D)
PAR(1DX0sXO0}
*
DT = 0401
*
20X = =1DX/B+G*A/B
1DX = INT(2DX91DXO)
X = INT(1DX9XO)
E = Y=X
Y 2z 0,0
»*
El = FSW(E~DoFALSEsFALSE,»TRUE)
E2 2 FSW(E+DsTRUEsFALSE +FALSE)
H = FLF(E1+E24TRUE):
: G 2 LSW(HsVy=V)
*
FIN(T95.0)
HDR(TIME s XsXDOT)
HDR
OUT(T+Xe1DX)
PLO(TsX)
PLO(X»1DX)
END
20 065 1,0 0e2
060 1.5 '

Figure 27, Mimic Program for Problem No, 6D
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R FIGURE 1-1
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8,_ Fig. 28, Time response of a relay servo with hysteresis
Q"‘ in the relay
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FIGURE

1-2

Fig. 29, Phase plane trajectory of a relay servo with hysteresis

in the relay
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(e) Relay servo with both dead space and hysteresis

The relay in this servo has the characteristic shown in fig. 6(d).
This characteristic can be described as follows. If G is initially
+V, then G remains at +V if E > +H and bécomes 0 when Es +H. 1If
G is initially -V, then G remains at -V if E < _gand becomes 0 when
Ez-H. If G1is initially O, then G remains 0 if -D= E =+D, becomes
+vV if E>+D , and becomes -V if E<« -D.

Let S1 be true when E>D, S2 be true when E< -D, Rl be true

when E £H, and R2 be true when E = -H, then we have,

sl = FSW(E—D,FALSE,FALSE,TRUE)
S2 = FSW(E+D,TRUE,FALSE,FALSE)
Rl = FSW(E-H,TRUE,TRUE,FALSE)
and R2 = 'FSW(E+H,FALSE,TRUE,TRUE)

Let L1 represent the status of a flip-flop so that L1 is true or
false when S1 is true or when Rl is true,respectively; otherwise

L1 remains unchanged. Let L2 represent the status of another flip-
flop so that L2 is true or false when S2 is true or when R2 is true,
- respectively; otherwise L2 remains unchanged. Note the case that
both S1 and Rl are true is impossible, neither is the case that
both S2 and R2 are true. We then have,

Ll FLF(S1,R1, TRUE)

Il

and L2 FLF (S2,R2, TRUE)
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When L1 is true, G is equal to +V. When L2 is true, G is
equal to -V. When both Ll and L2 are false, G is equal to 0. These
can be described by using logical control variables El, E2, and E3

defined by the following three statements,

El = LSW(L1l, TRUE,FALSE)
E2 = LSW(L2, TRUE,FALSE)
and E3 = NOT(IOR(El,E2))

There are altogether 12 statements which are shown in the Mimic
program for this servo in fig. 30.

If G is initially at +V, Ll is true and remains true until
Rl is true (this means until E= H). If G is initially at -V, L2
is true and remains true until R2 is true (this means until E =z -H).
If G is initially 0, both L1 and L2 are false and remains false
until S1 is true (this means until E> D) when G becomes +V, or
until S2 is true (this means until E < -D) when G becomes -V. Thus,
these statements prescribe the hysteresis/dead-space characteristic
of the relay.
| The transient or error response is shown in fig. 31 and the
phase trajectory in fig. 32. Notice that the two verticals lines
at which the switching of the relay occurs are off-set along the
horizontal axis. Since hysteresis or dead space contributes de-
stabilizing and static error, the existance of both gives a larger
static error and a limit cycle with a larger amplitude than either

alone.
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{

*AXPROBLEM NOo 6E***¥SERVO SIMULATION WITH DEAD SPACE AND HYSTERESIS
*

CON(AsBsVsDosH)
' PAR(1DX0sX0)
%
DT = 0001
*
2DX = ~1DX/B+G¥*A/B
10X = INT(2DXs1DX0)
X = INT(1DXsXO)
E = Y=-X
Y = 0,0
* o
Ss1 = FSW(E=DsFALSEsFALSEs»TRUE)
s2 = FSW(E+DsTRUEsFALSEIFALSE)
R1 = FSW(E=HsTRUEsFALSE9FALSE)
R2 = FSW(E+HsFALSEsFALSEsTRUE)
L1 = FLF{S1sR1,4TRUE)
L2 = FLF({S2sR2sTRUE)
»*
El G = V
E3 G = 0.0
E2 G =2 =\
*
El = LSW(L1sTRUESFALSE)
E2 = LSW(L2sTRUESsFALSE)
£3 = NOT(IOR(E1+E2))
»*
FIN(T+540)
HDR(TIMEs X9 XDOT)
HDR
OUT(TeXs1DX)
, PLO(TeX)
PLO(X91DX)
. END
20 005 100 002 001
0.0 145 ’

Figure 30, Mimic Program for Problem Mo, 6E
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FIGURE 1-1

Time response of a relay servo with a dead-space
and hysteresis in the relay
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FIGURE 1-2

Fig. 32, Phase plane trajectory of
a relay servo with a dead-
space and hysteresis in
the relay
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(8) cConclusion

The above Mimic programs and their programs and their results
have shown simplicity of the language and some techniques in sim-
ulation and computation of engineering and scientific problems.
They have also shown the advantages of great accuracy, no need of
scaling, and no hardware setup. Plots of curves are available with
automatic scaling and labeling.

Consideration of cost of computation should not be neglected.
The computer time for any of the above programs without plots rahges
from aboﬁt one-half minute to about two minutes on the IBM 7094
computer system at the University of Maryland; this variation de-
pends to a great extent on the value of DT. With plots, the com-
puter time is about doubled. The computer time at University of
Maryland costs at about $5.00 per minute. The cost for one run
of these programs with plots, thus ranges from $5.00 to $10.00.

If one takes five runs to have the program debugged, then the
cost of the computer time for one program ranges from $25.00 té
$100.00.

There are other advantages of digital analog simulation that
have been or are being recognized. These are feasibility and
simplicity of function generation of more than two variables,
availability of many mathematical functions normally provided in
a digital computer facility better computer utilization, rapid

switching from one simulation to another, simpler storage of sim-
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ulation programs for reuse, and easier machine maintenance. Lastly,
the use of cathode-ray-tube for one-line display as well as large-
scale real-time simulation are becoming realities.

In conclusion, the use of digital analog simulation as a tool
for engineering analysis and design will be rapidly increased as

more and better digital computer systems become available.
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